Barriers for lateral diffusion of transferrin receptor in the plasma membrane as characterized by receptor dragging by laser tweezers: fence versus tether

نویسندگان

  • Y Sako
  • A Kusumi
چکیده

Our previous results indicated that the plasma membrane of cultured normal rat kidney fibroblastic cell is compartmentalized for diffusion of receptor molecules, and that long-range diffusion is the result of successive intercompartmental jumps (Sako, Y. and Kusumi, A. 1994. J. Cell Biol. 125:1251-1264). In the present study, we characterized the properties of intercompartmental boundaries by tagging transferrin receptor (TR) with either 210-nm-phi latex or 40-nm-phi colloidal gold particles, and by dragging the particle-TR complexes laterally along the plasma membrane using laser tweezers. Approximately 90% of the TR-particle complexes showed confined-type diffusion with a microscopic diffusion coefficient (Dmicro) of approximately 10(-9) cm2/s and could be dragged past the intercompartmental boundaries in their path by laser tweezers at a trapping force of 0.25 pN for gold-tagged TR and 0.8 pN for latex-tagged TR. At lower dragging forces between 0.05 and 0.1 pN, particle-TR complexes tended to escape from the laser trap at the boundaries, and such escape occurred in both the forward and backward directions of dragging. The average distance dragged was half of the confined distance of TR, which further indicates that particle-TR complexes escape at the compartment boundaries. Since variation in the particle size (40 and 210 nm, the particles are on the extracellular surface of the plasma membrane) hardly affects the diffusion rate and behavior of the particle-TR complexes at the compartment boundaries, and since treatment with cytochalasin D or vinblastin affects the movements of TR (Sako and Kusumi as cited above), argument has been advanced that the boundaries are present in the cytoplasmic domain. Rebound of the particle-TR complexes when they escape from the laser tweezers at the compartment boundaries suggests that the boundaries are elastic structures. These results are consistent with the proposal that the compartment boundaries consist of membrane skeleton or a membrane-associated part of the cytoskeleton (membrane skeleton fence model). Approximately 10% of TR exhibited slower diffusion (Dmicro approximately 10(-10)-10(-11) cm2/s) and binding to elastic structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases

The hydrophobic proteins of plant plasma membrane still remain largely unknown.  For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...

متن کامل

Video Essay Compartmentalization of the Erythrocyte Membrane by the Membrane Skeleton: Intercompartmental Hop Diffusion of Band 3□V

Recent developments in microscopic instrumentation and probes have allowed the observation and manipulation of the movement of membrane proteins and lipids in the plasma membrane at the level of single molecules. These experiments are performed by tracking small colloidal gold particles attached to specific membrane proteins and lipids (single particle tracking) (Jacobson et al., 1995; Sheets e...

متن کامل

Microscopic Simulation of Epidermal Growth Factor Receptor Diffusion on Corralled Membrane Surfaces

The current understanding of how receptors diffuse and cluster in the plasma membrane is limited. Data from single particle tracking and laser tweezer experiments have suggested that membrane diffusion is affected by the presence of barriers dividing the membrane into corrals. Herein, we have developed a stochastic, spatial model to simulate the effect of corrals on the diffusion of receptors i...

متن کامل

Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques.

Diffusion of a G-protein coupled receptor, mu-opioid receptor (muOR), in the plasma membrane was tracked by single-fluorescent molecule video imaging and high-speed single-particle tracking. At variance with a previous publication, where gold-tagged muOR was found to be totally confined within a domain, which in turn underwent very slow diffusion itself, we found that muOR undergoes rapid hop d...

متن کامل

Compartmentalized structure of the plasma membrane for receptor movements as revealed by a nanometer-level motion analysis

Movements of transferrin and alpha 2-macroglobulin receptor molecules in the plasma membrane of cultured normal rat kidney (NRK) fibroblastic cells were investigated by video-enhanced contrast optical microscopy with 1.8 nm spatial precision and 33 ms temporal resolution by labeling the receptors with the ligand-coated nanometer-sized colloidal gold particles. For both receptor species, most of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 129  شماره 

صفحات  -

تاریخ انتشار 1995